Ray-traced troposphere slant delays for precise point positioning
نویسندگان
چکیده
Precise satellite orbits and clock information for global navigation satellite systems (GNSS) allow zerodifference position solutions, also known as precise point positioning (PPP) to be calculated. In recent years numerical weather models (NWM) have undergone an improvement of spatial and temporal resolution. This makes them not only useful for the computation of mapping functions but also allows slant troposphere delays from ray-tracing to be obtained. For this study, such ray-traced troposphere corrections have been applied to code and phase observations of 13 sites from the International GNSS Service (IGS) receiver network, which are located inside the boundaries of the Japanese Meteorological Agency (JMA) meso-scale weather model, covering a period of 4 months. The results from this approach are presented together with a comparison to standard PPP processing results. Moreover the advantages and caveats of the introduction of ray-traced slant delays for precise point positioning are discussed.
منابع مشابه
Application of ray-traced tropospheric slant delays to geodetic VLBI analysis
The correction of tropospheric influences via socalled path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric sla...
متن کاملRay-traced Troposphere Slant Delays from Numericalweather Models as Corrections for Insar
Highly variable weather conditions, especially the rapidly changing water vapor distribution, bias the interpretation of interferometric synthetic aperture radar (InSAR) images. Any change of atmospheric condition is reflected as differential propagation delay in the InSAR images, which is difficult to distinguish from the real ground motion. Moreover, for areas which cover a wide range of alti...
متن کاملNew Adaptable All-in-One Strategy for Estimating Advanced Tropospheric Parameters and Using Real-Time Orbits and Clocks
We developed a new strategy for a synchronous generation of real-time (RT) and near real-time (NRT) tropospheric products. It exploits the precise point positioning method with Kalman filtering and backward smoothing, both supported by real-time orbit and clock products. The strategy can be optimized for the latency or the accuracy of NRT production. In terms of precision, it is comparable to t...
متن کاملAccuracy Improvement of Tropospheric Delay Interpolation in RTK Networks
The effect of troposphere on the signals emitted from global navigation satellite system (GNSS) satellites, appears as an extra delay in the measurement of the signal traveling from the satellite to receiver. This delay depends on the temperature, pressure, humidity as well as the transmitter and receiver antennas location. In GNSS positioning, tropospheric delay effects on accuracy of differen...
متن کاملInvestigation of MODIS mission capability in tropospheric delay estimation for precise point positioning
Tropospheric delay is always considered as one of the factors limiting the accuracy of GPS. In this paper, the three-dimensional ray tracing technique is proposed to calculate the tropospheric delay. The ability of the MODIS mission to calculate the tropospheric delay is also examined. For this purpose, an area in central Europe was selected and a MODIS acquisition on 2008/08/01 was studied. In...
متن کامل